Geometric morphometric analysis of the shell of Cerion mumia (Pulmonata: Cerionidae) and related species

Jonathan P. Miller, e-mail: jonathan356@gmail.com

Museo Nacional de Ciencias Naturales, c/ Jose Gutierrez Abascal, 2, 28006 Madrid, Spain
Abstract

Cerion mumia is a complex of eight subspecies distributed along the north coast of Cuba from Pinar del Rio to Camaguey provinces. The geometric morphometric analysis presented here was aimed at identifying patterns of shell shape variation to test the hypothesis of colonisation through land bridges during the Eocene-Oligocene. C. mumia cuspidatum, the easternmost population, was similar in shape to the subspecies from the north coast of Havana, but showed morphometric differences suggesting allopatric speciation followed by dispersal. The shells from the west were more globose than those from Havana or the east, which tended to be more cylindrical, as shown by the thin-plate spline analysis. As a result of the morphometric analysis I propose to elevate C. noriae comb. nov. and C. wrighti comb. nov. to species rank and to include C. noriae hondanum comb. nov. as a subspecies of C. noriae comb. nov. I report a second locality of C. noriae comb. nov. at Playa Santa Fe formation from the late upper Pleistocene. Geometric morphometric techniques are useful in species identification through comparing new samples with type material.

Key words
Geometric morphometrics; patterns of variation; shell shape; land snails; Cerion
References

Aguayo C. G., Sánchez-Roig M. 1953. Nuevos moluscos cubanos de la familia Cerionidae. Memorias de la Sociedad Cubana de Historia Natural “Felipe Poey” 21: 283–298.
Borda V., Ramirez R. 2014. Análisis morfométrico para la discriminación de especies: el caso del complejo Megalobulimus leucostoma. Rev. Peru Biol. 21: 117–124. http://dx.doi.org/10.15381/rpb.v21i2.9814
Clench W. J., Aguayo C. G. 1953. Nuevos moluscos cubanos del género Cerion. Torreia 18: 1–5.
Conde-Padín P., Grahame J. , Rolán-Alvarez E. 2007. Detecting shape differences in species of the Littorina saxatilis complex by morphometric analysis. J. Mollus. Stud. 73: 147–154.
Cruz R. A. L., Pante M. J. R., Rohlf F. J. 2012. Geometric morphometric analysis of shell shape variation in Conus (Gastropoda: Conidae). Zool. J. Linn. Soc. 165: 296–310. http://dx.doi.org/10.1111/j.1096-3642.2011.00806.x
Espinosa J., Ortea J. 1999. Catalogo de los moluscos terrestres de Cuba. Avicennia 1999: 7–134.
Espinosa J., Ortea J. Á. 2009. Moluscos terrestres de Cuba. Spartacus Foundation & Sociedad Cubana de Zoologia, Vaasa.
Galler L., Gould S. J. 1979. The morphology of a ‘Hybrid Zone’ in Cerion: variation, clines, and an ontogenetic relationship between two ‘species’ in Cuba. Evolution 33: 714–727. http://dx.doi.org/10.2307/2407793
Gould S. J. 1997. The taxonomy and geographic variation of Cerion on San Salvador (Bahama Islands). Proceedings of the 8th Conference on the Geology of the Bahamas and Other Carbonate Regions: Bahamian Field Station, San Salvador, Bahamas: 73–91.
Gould S. J., Paull C. 1977. Natural history of Cerion: geographic variation of Cerion (Mollusca: Pulmonata) from the eastern end of its range (Hispaniola to the Virgin Islands): coherent patterns and taxonomic simplification. Breviora Mus. Comp. Zool.: 24.
Gould S. J., Woodruff D. S. 1986. Evolution and systematics of Cerion (Mollusca, Pulmonata) on New Providence Island: a radical revision. Bull. Am. Mus. Nat. Hist. 182: 389–490.
Gould S. J., Woodruff D. S., Martin J. P. 1974. Genetics and morphometrics of Cerion at Pongo Carpet: A new systematic approach to the enigmatic land snail. Syst. Zool. 23: 518–536. http://dx.doi.org/10.2307/2412470
Hammer Ø., Harper D., Ryan P. 2009. PAST-PAlaeontological STatistics, ver. 3.0. University of Oslo, Oslo: 1–31.
Harasewych M. G., Windsor A. M., Lopez-Vera E., Thompson F. G. 2015. On the phylogenetic relationships of the genus Mexistrophia and of the family Cerionidae (Gastropoda: Eupulmonata). Nautilus 129: 156–162.
Hermsen E. J., Hendricks J. R. 2008. W(h)ither fossils? Studying morphological character evolution in the age of molecular sequences 1. Ann. Mo. Bot. Gard. 95: 72–100. http://dx.doi.org/10.3417/2006206
Iturralde-Vinent M. A. 2006. Meso-Cenozoic Caribbean paleogeography: implications for the historical biogeography of the region. Int. Geol. Rev. 48: 791–827. http://dx.doi.org/10.2747/0020-6814.48.9.791
Jolliffe I. 2002. Principal component analysis. Springer Verlag, New York, Berlin, Heidelberg.
Mayr E., Ashlock P. D. 1969. Principles of systematic zoology. McGraw-Hill, New York.
Mayr E., Rosen C. B. 1956. Geographic variation and hybridization in populations of Bahama snails (Cerion). Am. Mus. Novit. 1806: 1–48.
Michener C. D., Sokal R. R. 1957. A quantitative approach to a problem in classification. Evolution 11: 130–162. http://dx.doi.org/10.2307/2406046
Pilsbry H. A. 1901. Manual of conchology 2nd series: Pulmonata. Oriental Bulimoid Helicidae; Odontostominae, Cerionidae 2: 542.
Pilsbry H. A., Vanatta E. 1895. New species of the genus Cerion. Proc. Acad. Nat. Sci. Philadelphia 47: 206–210.
Pilsbry H. A., Vanatta E. 1896. Catalogue of the species of Cerion, with descriptions of new forms. Proc. Acad. Nat. Sci. Philadelphia 48: 315–338.
Pilsbry H. A., Vanatta E. 1898. Some Cuban species of Cerion. Proc. Acad. Nat. Sci. Philadelphia 50: 475–478.
Rattanawannee A., Chanchao C., Wongsiri S. 2012. Geometric morphometric analysis of giant honeybee (Apis dorsata Fabricius, 1793) populations in Thailand. J. Asia-Pacif. Entomol. 15: 611–618.
Rodríguez-Ochoa A. 2014. Relación entre la distribución geográfica y los patrones morfológicos en el género Cerion (Mollusca: Cerionidae) en Cuba. Revista Cubana de Ciencias Biológicas 3: 59–67.
Rodríguez-Ochoa A. 2015. Comparación de la ubicación interna y externa de puntos morfológicos clave para describir la variación morfológica en conchas de Cerion (Pulmonata: Cerionidae). Revista Cubana de Ciencias Biológicas 4: 126–132.
Rohlf F. J. 2002. Geometric morphometrics and phylogeny. In: MacLeod N., Forey P. (eds). Morphology, shape and phylogeny. Taylor & Francis, London, pp. 175–193. http://dx.doi.org/10.1201/9780203165171.ch9
Rohlf F. J. 2007. tpsRelw version 1.45. Department of Ecology and Evolution, State University of New York, Stony Brook.
Saitou N., Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406–425.
Smith U. E., Hendricks J. R. 2013. Geometric morphometric character suites as phylogenetic data: extracting phylogenetic signal from gastropod shells. Syst. Biol. 62: 366–385. http://dx.doi.org/10.1093/sysbio/syt002
Swiderski D. L., Zelditch M. L., Fink W. L. 2002. Comparability, morphometrics and phylogenetic systematics. In: MacLeod N., Forey P. (eds). Morphology, shape and phylogeny. Taylor & Francis, London, pp. 67–99. http://dx.doi.org/10.1201/9780203165171.ch6
Toro M. V., Manriquez G., Suazo I. 2010. Morfometría geométrica y el estudio de las formas biológicas: De la morfología descriptiva a la morfología cuantitativa. Int. J. Morphol. 28: 977–990. http://dx.doi.org/10.4067/S0717-95022010000400001
Woodruff D. S., Gould S. J. 1980. Geographic differentiation and speciation in Cerion – a preliminary discussion of patterns and processes. Biol. J. Linn. Soc. 14: 389–416. http://dx.doi.org/10.1111/j.1095-8312.1980.tb00115.x
Zelditch M. L., Fink W. L., Swiderski D. L. 1995. Morphometrics, homology, and phylogenetics: quantified characters as synapomorphies. Syst. Biol. 44: 179–189. http://dx.doi.org/10.1093/sysbio/44.2.179

Folia Malacologica (2016) 24: 239-250
First published on-line: 2016-12-05 00:00:00
http://dx.doi.org/10.12657/folmal.024.020
Full text (.PDF) BibTeX Mendeley Back to list