A note on oviposition by Lymnaea stagnalis (Linnaeus, 1758) (Gastropoda: Pulmonata: Lymnaeidae) on shells of conspecifics under laboratory conditions

Paola Lombardo, e-mail: p.lombardo@limnoconsulting.com

Limno Consulting, via Bedollo 303, I-00124 Rome, Italy

Francesco Paolo Miccoli, e-mail: francescopaolo.miccoli@univaq.it

University of L’Aquila, Coppito Science Center, I-67100 L’Aquila, Italy

Oviposition by Lymnaea stagnalis (L.) on shells of conspecifics has been reported anecdotally from laboratory observations. In order to gain the first quantitative insight into this behaviour, we have quantified the proportion of individuals bearing egg clutches in a long-term monospecific outdoor laboratory culture of L. stagnalis during two consecutive late-summer months. The snails were assigned to size classes based on shell height. Differences between the size class composition of clutch-bearers and of the general population were statistically compared by means of Pearson’s distance χ²P analysis. Egg clutches were laid on snails of shell height >15 mm (i.e. reproductive-age individuals), with significant selection for the larger size classes (shell height 25–40 mm). While the mechanisms of and reasons behind such behaviour remain unknown, selection of larger adults as egg-carriers may have ecological implications at the population level.

Key words
freshwater gastropods; Lymnaea stagnalis; great pond snail; reproductive behaviour

Albrecht C. 2006. Unusual reproductive strategy of pulmonate gastropods in the Balkan ancient Lake Prespa. Malakol. Abh. 24: 57–63.
Bank R. 2017. Lymnaea stagnalis. Species profile at Fauna Europaea. Available at http://www.fauna-eu.org; last accessed 27 Feb 2017.
Boag D. A., Pearlstone P. S. M. 1979. On the life cycle of Lymnaea stagnalis (Pulmonata: Gastropoda) in southwestern Alberta. Can. J. Zool. 57: 353–362. https://doi.org/10.1139/z79-041
Boeters H. D., Glöer P. 2007. A contribution to the genus Boetersiella Arconada & Ramos 2001 in Spain with the description of Boetersiella wolfi n. sp. Heldia 5: 85–88.
Boss C. N., Laman T. G., Blankenspoor H. D. 1984. Dispersal movements of four species of pulmonate and operculate snails in Douglas Lake, Michigan. Nautilus 98: 80–83.
Brix K. V., Esbaugh A. J., Munley K. M., Grosell M. 2012. Investigations into the mechanism of lead toxicity to the freshwater pulmonate snail, Lymnaea stagnalis. Aquatic Toxicol. 106–107: 147–156. https://doi.org/10.1016/j.aquatox.2011.11.007
Dussart G. 1979. Life cycles and distribution of the aquatic gastropod molluscs Bithynia tentaculata (L.), Gyraulus albus (Müller), Planorbis planorbis (L.) and Lymnaea peregra (Müller) in relation to water chemistry. Hydrobiologia 67: 223–239. https://doi.org/10.1007/BF00023179
Elger A., Barrat-Segretain M. H. 2002. Use of the pond snail Lymnaea stagnalis (L.) in laboratory experiments for evaluating macrophyte palatability. Arch. Hydrobiol. 153: 669–683. https://doi.org/10.1127/archiv-hydrobiol/153/2002/669
Elger A., Lemoine D. 2005. Determinants of macrophyte palatability to the pond snail Lymnaea stagnalis. Freshwater Biol. 50: 86–95. https://doi.org/10.1111/j.1365-2427.2004.01308.x
Galassi D. M. P., Lombardo P., Fiasca B., Di Cioccio A., Di Lorenzo T., Petitta M., Di Carlo P. 2014. Earthquakes trigger the loss of groundwater biodiversity. Sci. Rep. 4: 6273. https://doi.org/10.1038/srep06273
Gotelli N. J., Ellison A. M. 2004. A primer of ecological statistics. Sinauer, Sunderland, MA.
Gross E. M., Lombardo P. in press. Limited effect of gizzard sand on consumption of the macrophyte Myriophyllum spicatum by the great pond snail Lymnaea stagnalis. Hydrobiologia. https://doi.org/10.1007/s10750-016-2890-8
Hermann P. M., De Lange R. P. J., Pieneman A. W., ter Maat A., Jansen R. F. 1997. Role of neuropeptides encoded on CDCH-1 gene in the organization of egg-laying behavior in the pond snail, Lymnaea stagnalis. J. Neurophysiol. 78: 2859–2869.
Hoffman A. L., Olden J. D., Monroe J. B., Poff N. L., Wellnitz T., Wiens J. A. 2006. Current velocity and habitat patchiness shape stream herbivore movement. Oikos 115: 358–368. https://doi.org/10.1111/j.2006.0030-1299.14675.x
Janse C., ter Maat A., Pieneman A. W. 1990. Molluscan ovulation hormone containing neurons and age-related reproductive decline. Neurobiol. Aging 11: 457–463. https://doi.org/10.1016/0197-4580(90)90013-P
Kappes H., Haase P. 2012. Slow, but steady: dispersal of freshwater molluscs. Aquat. Sci. 74: 1–14. https://doi.org/10.1007/s00027-011-0187-6
Kobayashi S., Kojima S., Yamanaka M., Sadamoto H., Nakamura H., Fujito Y., Kawai R., Sakakibara M., Ito E. 1998. Operant conditioning of escape behavior in the pond snail, Lymnaea stagnalis. Zool. Sci. 15: 683–690. https://doi.org/10.2108/zsj.15.683
Koene J. M. 2010. Neuro-endocrine control of reproduction in hermaphroditic freshwater snails: mechanisms and evolution. Front. Behav. Neurosci. 4: 167. https://doi.org/10.3389/fnbeh.2010.00167
Levy M., Tunis M., Isserhoff H. 1973. Population control in snails by natural inhibitors. Nature 241: 65–66. https://doi.org/10.1038/241065a0
Lombardo P., Miccoli F. P., Giustini M., Cicolani B. 2011. Planarian (Dugesia polychroa) predation on freshwater gastropod eggs depends on prey species, clutch morphology, and egg size. Fundam. Appl. Limnol. 178: 325–339. https://doi.org/10.1127/1863-9135/2011/0178-0325
Mooij-Vogelaar J. W., Jager J. C., van der Steen W. J. 1970. The effect of density changes on the reproduction of the pond snail Lymnaea stagnalis (L.). Neth. J. Zool. 20: 279–288. https://doi.org/10.1163/002829670X00042
Nakadera Y., Koene J. M. 2013. Reproductive strategies in hermaphroditic gastropods: conceptual and empirical approaches. Can. J. Zool. 91: 367–381. https://doi.org/10.1139/cjz-2012-0272
Nakadera Y., Swart E. M., Maas J. P. A., Montagne-Wajer K., ter Maat A., Koene J. M. 2015. Effects of age, size, and mating history on sex role decision of a simultaneous hermaphrodite. Behav. Ecol. 26: 232–241. https://doi.org/10.1093/beheco/aru184
Noland L. E., Carriker M. R. 1946. Observations on the biology of the snail Lymnaea stagnalis appressa during twenty generations in laboratory culture. Am. Midl. Nat. 36: 467–493. https://doi.org/10.2307/2421516
Piggott H., Dussart G. 1995. Egg-laying and associated behavioural responses of Lymnaea peregra (Muller) and Lymnaea stagnalis (L.) to calcium in their environment. Malacologia 37: 13–21.
Seddon M. B., Kebapçı U., van Damme D., Prie V. 2014. Radix balthica. The IUCN Red List of Threatened Species, v. 2016-3: e.T155647A42430553. Available at http://www.iucnredlist.org/details/155647/0; last accessed 27 Feb 2017.
Shirokaya A. A., Röpstorf P. 2003. Morphology of syncapsules and the duration of embryogeny of Baikalian endemic limpets (Gastropoda, Pulmonata, Acroloxidae). Berliner Paläobiol. Abh. 4: 183–192.
Sitnikova T. Ya., Shimaraev M. N. 2001. O glubokovodnykh „karlikakh” i „gigantakh” srehdi baykalskikh endemichnykh gastropod. Zh. Obshch. Biol. 62: 226–238.
ter Maat A., Pieneman A. W., Goldschmeding J. T., Smelik W. F. E., Ferguson G. P. 1989. Spontaneous and induced egg laying behavior of the pond snail, Lymnaea stagnalis. J. Comp. Physiol. A 164: 673–683. https://doi.org/10.1007/BF00614510
ter Maat A., Zonneveld C., de Visser J. A. G. M., Jansen R. F., Montagne-Wajer K., Koene J. M. 2007. Food intake, growth, and reproduction as affected by day length and food availability in the pond snail Lymnaea stagnalis. Am. Malacol. Bull. 23: 113–120. https://doi.org/10.4003/0740-2783-23.1.113
van der Steen W. J., van den Hoven N. P., Jager J. C. 1969. A method for breeding and studying freshwater snails under continuous water change, with some remarks on growth and reproduction in Lymnaea stagnalis (L.). Neth. J. Zool. 19: 131–139. https://doi.org/10.1163/002829669X00170
XLSTAT 2014. Built-in user manual for XLSTAT Pro and associated modules. Addinsoft™ XLSTAT, Paris, F.
Zar J. H. 2009. Biostatistical analysis, 5th ed. Pearson/Prentice Hall, Upper Saddle River, NJ.

Folia Malacologica (2017) : 0-0
First published on-line: 2017-05-04 00:00:00
Full text (.PDF) BibTeX Mendeley Back to list