Fecundity, sex hormones and release of cercariae of Schistosoma mansoni in Biomphalaria alexandrina (Ehrenberg, 1831) treated with copper and magnesium chlorophyllin

Mona Ragheb

Theodor Bilharz Research Institute (TBRI), El Nile Street, 12411 Giza, Egypt

Tarek A. El-Tayeb

Theodor Bilharz Research Institute (TBRI), El Nile Street, 12411 Giza, Egypt

Mohamed A. El-Emam, e-mail: mohelemam1945@yahoo.com

Theodor Bilharz Research Institute (TBRI), El Nile Street, 12411 Giza, Egypt

Mohamed A. Amer

Theodor Bilharz Research Institute (TBRI), El Nile Street, 12411 Giza, Egypt

Mohamed A. Bashtar

Theodor Bilharz Research Institute (TBRI), El Nile Street, 12411 Giza, Egypt
Abstract

Schistosomiasis is a public health problem in many developing countries. Control of the snail intermediate hosts of Schistosoma is a promising method for eliminating this disease. Copper (Cu-chl) and magnesium chlorophyllin (Mg-chl) are potent photosensitisers used in diverse biological applications. Their effects on the fecundity of Biomphalaria alexandrina (Ehrenberg): its reproductive rate (R0) and total levels of progesterone, testosterone and estradiol were evaluated. Besides, we determined the production of cercariae of S. mansoni. The concentrations LC10 and LC25 of Cu-chl and Mg-chl significantly reduced the fecundity and R0 of the treated snails which could be partially due to the decrease in the level of steroid sex hormones. The reduction rates of R0 for the snails treated with LC10 Cu-chl and Mg-chl were 72.7% and 89.7%, respectively. Moreover, Cu-chl and Mg-chl significantly suppressed the cercarial production which dropped from 9,778 cercariae per snail in the light control group to 3,126 and 107 cercariae per snail in the groups treated with LC10 Cu-chl and Mg-chl 21 days after exposure to miracidia, respectively. Since Cu-chl and Mg-chl negatively interfere with the parasite transmission, they should be considered in schistosomiasis control programmes.

Key words
schistosomiasis; fresh water snails; photosensitisers; fecundity; reproductive rate
References

Bakry F. A. 2009. Use of some plant extracts to control Biomphalaria alexandrina snails with emphasis on some biological effects. Pesticide Biochem. Physiol. 95: 159–165. https://doi.org/10.1016/j.pestbp.2009.08.007
Bakry F. A., Abd El-Atti M. S., Ismail S. M. 2013. Effect of Zingiber officinale (ginger) on electrophoresis analysis and biochemical aspects of Biomphalaria alexandrina snails infected with Schistosoma mansoni. J. Sci. Eng. Res. 4: 1147–1154.
El-Emam M. A., Osman G. Y., Abdel-Hamid H., Mohamed A. H., Ali R. E. M. 2017. Determination of egg laying capacity, sex hormones and mortality of Biomphalaria alexandrina snails exposed to methanol extract from curcumin and the plants Callistemon citrinus and Zingiber officinale. J. Biosci. Appl. Res. 3: 97–109.
El-Hommossany K., El-Sherbini S. A. 2011. Impact of the photosensitizer hematoporphyrin coated gold nanoparticles on Biomphalaria alexandrina snails. Open J. Anim. Sci. 1: 54–60. https://doi.org/10.4236/ojas.2011.12007
El-Sayed K., El-Sherbini S. 2006. Impact of hematoporphyrin and different laser sources on Biomphalaria alexandrina snails and their infection with Schistosoma mansoni. J. Biol. Chem. Environ. Sci. 1: 320–340.
Erzinger G. S., Wohllebe S., Vollrath F., Souza S. C., Richter P., Lebert M., Häder D. P. 2001. Optimizing conditions for the use of chlorophyll derivatives for photodynamic control of parasites in aquatic ecosystems. Parasitol. Res.: 109: 781–786. https://doi.org/10.1007/s00436-011-2322-7
Ferruzzi M. G., Blakeslee J. 2007. Digestion, absorption and cancer preventative activity of dietary chlorophyll derivatives. Nutr. Res. 27: 1–12. https://doi.org/10.1016/j.nutres.2006.12.003
Gawish F. A. 2008. Activity of the plant Syzygium jambos against Biomphalaria alexandrina snails’ reproduction and infection with Schistosoma mansoni. New Egypt. J. Med. 39: 103–110.
Gawish F. A., El-Sherbini, S. A., Aly H. F. 2009. Effect of photosensitization process of carbamide perhydrate on Biomphalaria alexandrina snails and their infection with Schistosoma mansoni. J. Appl. Sci. Res. 5: 46–56.
Hasheesh W. S., Mohamed R. T., Abd El-Monem S. 2011. Biological and physiological parameters of Bulinus truncatus snails exposed to methanol extract of the plant Sesbania sesban. Adv. Biol. Chem. 1: 65–73. https://doi.org/10.4236/abc.2011.13009
Ibrahim A. M., El-Emam M. A., El-Dafrawy S. M., Mossalem H. S. 2004. Impact of certain plant species on Schistosoma mansoni-Biomphalaria alexandrina system. Proc. 3rd Int. Conf. Biol. Sci. Tanta University 3–4 Apr. 2004. 3: 390–413.
Mahmoud M. B., Ibrahim W. L., Abou-El-Nour B. M., El-Emam M. A., Youssef A. A. 2011. Biological and biochemical parameters of Biomphalaria alexandrina snails exposed to the plants Datura stramonium and Sesbania sesban as water suspensions of their dry powder. Pest. Bioch. Physiol. 99: 96–104. https://doi.org/10.1016/j.pestbp.2010.11.005
Mekler L. B., Bychovsky A. F., Krikun B. I. 1969. Electron microscope study of the viricidal properties of sodium magnesium chlorophyllin. Nature 22: 574–575. https://doi.org/10.1038/222574b0
Miller J. N., Miller J. C. 2010. Statistics and chemometrics for analytical chemistry (6th ed.). Pearson Education Limited, Edinburgh Gate, Harlow, Essex, England.
Oehlmann J., Fioroni P., Stroben E., Markert B. 1996. Tributiltin (TBT) effects on Ocinebrina aciculate (Gastropoda: Muricidae): imposex development, sterilization, sex change and population decline. Sci. Total Environ. 188: 205–223. https://doi.org/10.1016/0048-9697(96)05173-X
Osman G. Y., Ahmed M. M., Abdel Kader A., Mohamed A. A. 2011. Biological studies on Biomphalaria alexandrina snails treated with Furcraea selloa marginata plant (family: Agavaceae) and Bacillus thuringiensis kurstaki (Dipel-2x). J. Appl. Pharm. Sci. 1(10): 47–55.
Perrett S., Whitfield P. J. 1996. Currently available molluscicides. Parasitol. Today 12: 156–159. https://doi.org/10.1016/0169-4758(96)10001-6
Ragheb M., El-Tayeb T., Al-Emam M., Amer M., Bashtar A. 2013. Copper chlorophyllin and magnesium chlorophyllin as molluscicidal agents against Biomphalaria alexandrina snails. Asian Acad. Res. J. Multi-Discipl. 1: 2319–2801.
Redmond R. W. 2008. Photophysics and photochemistry in photodynamic therapy. In: Hamlin M. R., Mroz P. (eds). Advances in photodynamic therapy: basic, translational, and clinical. Artech House, Boston and London, pp. 41–58.
Rizk M., Metwally N., Hamed M., Mohamed A. 2012. Correlation between steroid sex hormones, egg laying capacity and cercarial shedding in Biomphalaria ale­xandrina snails after treatment with Haplophyllum tuberculatum. Exp. Parasitol. 132: 171–179. https://doi.org/10.1016/j.exppara.2012.06.011
Spikes J. D. 1989. Photosensitization. In: Smith K. C. (ed.). The science of photobiology. Plenum Press, New York and London, pp.79–110. https://doi.org/10.1007/978-1-4615-8061-4_3
Steinmann P., Keiser J., Bos R., Tanner M., Utzinger J. 2006. Schistosomiasis and water resources development, systematic review, meta-analysis and estimates of people at risk. Lancet Infect. Dis. 6: 411–425. https://doi.org/10.1016/S1473-3099(06)70521-7
Vesenick D. C., De Paula N. A., Niwa A. M., Mantovani M. S. 2012. Evaluation of the effect of chlorophyllin on apoptosis induction, inhibition of cellular proliferation and mRNA expression of CASP8, CASP9, APC and S-catinin. Curr. Res. J. Biol. Sci. 4: 315–322.
WHO (World Health Organization) 2009. The control of schistosomiasis. Tech. Rep. Ser. 922, Geneva.
WHO (World Health Organization) 2017. Schistosomiasis. Fact Sheet No. 115 updated in October 2017. http://www.who.int/mediacentre/factsheets/fs115/en
Whollebe S., Richter R., Richter P., Häder D. P. 2009. Photodynamic control of human pathogenic parasites in aquatic ecosystems using chlorophyllin and pheophorbid as photodynamic substances. Parasitol. Res. 104: 593–600. https://doi.org/10.1007/s00436-008-1235-6

Folia Malacologica (2018) 26: 17-24
First published on-line: 2018-03-06 00:00:00
https://doi.org/10.12657/folmal.026.003
Full text (.PDF) BibTeX Mendeley Back to list