Correlates of snail shell variation along a unidirectional freshwater gradient in Lithasia geniculata (Haldeman, 1840) (Caenogastropoda: Pleuroceridae) from the Duck River, Tennessee, USA

Russell Minton, e-mail: mintonrl@gmail.com

Department of Biological and Environmental Sciences, University of Houston Clear Lake, 2700 Bay Area Boulevard MC 39, 77058 Houston, USA

K. C. Hart, e-mail: hartk0708@uhcl.edu

Department of Biological and Environmental Sciences, University of Houston Clear Lake, 2700 Bay Area Boulevard MC 39, 77058 Houston, USA

Riccardo Fiorillo, e-mail: rfiorill@ggc.edu

School of Science and Technology, Georgia Gwinnett, 1000 University Center Lane, 30043 Lawrenceville, USA

Christopher Brown, e-mail: cbrown37@ggc.edu

School of Science and Technology, Georgia Gwinnett, 1000 University Center Lane, 30043 Lawrenceville, USA
Abstract

Phenotypic plasticity in snail shells is a well-documented phenomenon, specifically in freshwater species. In riverine taxa, shells respond to the unidirectional gradient of flow and depth as well as to predation by crushing predators. Using populations of Lithasia geniculata from the Duck River, Tennessee, USA, we examined environmental correlates of shell shape change and resistance to crushing along a riverine gradient. Shells were more globose, more robust, and more resistant to crushing forces downstream relative to upstream; these characteristics were correlated with river discharge and presence of molluscivorous fish. Size, however, did not have effects on shape nor crushing strength. These data are consistent with those observed in other snail species, and expand on our knowledge of potential fitness benefits and causes of plasticity in freshwater snail shells

Key words
river discharge; geometric morphometrics; phenotypic plasticity; crushing resistance; morphology
References

Adams C. C. 1900. Variation in Io. Proc. Am. Assoc. Adv. Sci. 49: 208–225.
Adams C. C. 1915. The variations and ecological distribution of the snails of the genus Io. Mem. Natl. Acad. Sci. 12: 1–92. https://doi.org/10.5962/bhl.title.52022
Adams D. C., Otárola-Castillo E. 2013. geomorph: an R package for the collection and analysis of geometric morphometric shape data. Methods Ecol. Evol. 4: 393–399. https://doi.org/10.1111/2041-210X.12035
Alexander J. E., Covich A. P. 1991. Predation risk and avoidance behavior in two freshwater snails. Biol. Bull. 180: 387–393. https://doi.org/10.2307/1542339
Appleton R. D., Palmer A. R. 1988. Water-borne stimuli released by predatory crabs and damaged prey induce more predator-resistant shells in a marine gastropod. P. Natl. Acad. Sci. USA 85: 4387–4391. https://doi.org/10.1073/pnas.85.12.4387
Berrigan D., Scheiner S. M. 2004. Modeling the evolution of phenotypic plasticity. In: DeWitt T. J., Scheiner S. M. (eds). Phenotypic Plasticity. Oxford University Press, New York, pp. 82–97.
Brown K. M., Quinn J. F. 1988. The effect of wave action on growth in three species of intertidal gastropods. Oecologia 75: 420–425. https://doi.org/10.1007/BF00376946
Cazenave K. R., Zanatta D. T. 2016. Environmental drivers of shell shape in a freshwater gastropod from small and large lakes. Freshwater Sci. 35: 948–957. https://doi.org/10.1086/686912
Chaves-Campos J., Coghill L. M., Garcia de Leon F. J., Johnson S. G. 2012. The effect of aquatic plant abundance on shell crushing resistance in a freshwater snail. PLoS ONE 7: e44374. https://doi.org/10.1371/journal.pone.0044374
Covich A. P. 2010. Winning the biodiversity arms race among freshwater gastropods: competition and coexistence through shell variability and predator avoidance. Hydrobiologia 653: 191–215. https://doi.org/10.1007/s10750-010-0354-0
Davis G. M. 1974. Report on the rare and endangered status of a selected number of freshwater Gastropoda from southeastern U.S.A. Unpublished report submitted to the United States Fish and Wildlife Service, United States Department of the Interior, Washington D. C.
DeWitt T. J. 1996. Functional tradeoffs and phenotypic plasticity in the freshwater snail Physa. Ph. D. thesis, Binghamton University, New York.
DeWitt T. J. 1998. Costs and limits of phenotypic plasticity: tests with predator-induced morphology and life-history in a freshwater snail. J. Evolution. Biol. 11: 465–480. https://doi.org/10.1046/j.1420-9101.1998.11040465.x
DeWitt T. J., Scheiner S. M. 2004. Phenotypic plasticity. Oxford University Press, New York.
DeWitt T. J., Robinson B. W., Wilson D. S. 2000. Functional diversity among predators of a freshwater snail impose an adaptive tradeoff for shell morphology. Evol. Ecol. Res. 2: 129–148.
Dillon R. T. 1984. What shall I measure on my snails? Allozyme data and multivariate analysis used to reduce the non-genetic component of morphological variance in Goniobasis proxima. Malacologia 25: 503–511.
Dillon R. T. 2000. The ecology of freshwater molluscs. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511542008
Dunithan A., Jacquemin S., Pyron M. 2012. Morphology of Elimia livescens (Mollusca: Pleuroceridae) in Indiana, U.S.A. covaries with environmental variation. Am. Malacol. Bull. 30: 127–133. https://doi.org/10.4003/006.030.0110
Dussart G. B. J. 1987. Effects of water flow on the detachment of some aquatic pulmonate gastropods. Am. Malacol. Bull. 5: 65–72.
Edgell T. C., Miyashita T. 2009. Shell shape and tissue withdrawal depth in 14 species of temperate intertidal snail. J. Mollus. Stud. 75: 235–240. https://doi.org/10.1093/mollus/eyp018
Edgell T. C., Neufeld C. J. 2008. Experimental evidence for latent developmental plasticity: intertidal whelks respond to a native but not an introduced predator. Biol. Lett. 4: 385–387. https://doi.org/10.1098/rsbl.2008.0204
Etnier D. A., Starnes W. C. 1984. The fishes of Tennessee. The University of Tennessee Press, Knoxville.
Etter R. J. 1988. Physiological stress and color polymorphism in the intertidal snail Nucella lapillus. Evolution 42: 660–680. https://doi.org/10.1111/j.1558-5646.1988.tb02485.x
Etter R. J. 2007. Snails. In: Denny M. W., Gaines S. D. (eds). Encyclopedia of tidepools and rocky shores. University of California Press, Oakland, pp. 530–536.
Falconer D. S., Mackay T. F. 1996. Introduction to quantitative genetics, 4th edition. Longman Scientific and Technical, Essex.
Goodall C. 1991. Procrustes methods in the statistical analysis of shape. J. Roy. Stat. Soc. B 53: 285–339.
Goodrich C. 1937. Studies of the gastropod family Pleuroceridae – VI. Occas. Pap. Mus. Zool. 347: 1–12.
Gotthard K., Nylin S. 1995. Adaptive plasticity and plasticity as adaptation: a selective review of plasticity in animal morphology and life history. Oikos 74: 3–17. https://doi.org/10.2307/3545669
Haas F., Schwarz E. 1913. Die Unioniden des Gebietes zwischen Mainz und deutschen Donau in tiergeographischer Hinsicht. Abh. Math.-Phys. Kl. K. Bayer. Akad. Wiss. 26: 1–34.
Haase M. 2003. Clinal variation in shell morphology of the freshwater gastropod Potamopyrgus antipodarum along two hill-country streams in New Zealand. J. Roy. Soc. N. Z. 33: 549–560. https://doi.org/10.1080/03014223.2003.9517743
Hornbach D. J., Kurth V. J., Hove M. C. 2010. Variation in freshwater mussel shell sculpture and shape along a river gradient. Am. Midl. Nat. 164: 22–36. https://doi.org/10.1674/0003-0031-164.1.22
Huryn A. D., Denny M. W. 1997. A biomechanical hypothesis explaining upstream movements by the freshwater snail Elimia. Funct. Ecol. 11: 472–483. https://doi.org/10.1046/j.1365-2435.1997.00116.x
Johnson P. D., Bogan A. E., Brown K. M., Burkhead N. M., Cordeiro J. R., Garner J. T., Hartfield P. D., Lepitzki D. A. W., Mackie G. L., Pip E., Tarpley T. A., Tiemann J. S., Whelan N. V., Strong E. E. 2013. Conservation status of freshwater gastropods of Canada and the United States. Fisheries 38: 247–282. https://doi.org/10.1080/03632415.2013.785396
Kistner E. J., Dybdahl M. F. 2013. Adaptive responses and invasion: the role of plasticity and evolution in snail shell morphology. Ecol. Evol. 3: 424–436. https://doi.org/10.1002/ece3.471
Krist A. C. 2002. Crayfish induce a defensive shell shape in a freshwater snail. Invertebr. Zool. 121: 235–242. https://doi.org/10.1111/j.1744-7410.2002.tb00063.x
Lowell R. B., Fletcher C. R., Grahame J. W., Mill P. J. 1994. Ontogeny of shell morphology and shell strength of the marine snails Littorina obtusata and Littorina mariae: different defense strategies in a pair of sympatric, sibling species. J. Zool. 234: 149–164. https://doi.org/10.1111/j.1469-7998.1994.tb06062.x
McMahon R. F. 2003. Contributions of the Hong Kong malacological and marine workshops to the comparative and ecological physiology of intertidal invertebrates. In: Morton B. (ed.). Perspectives on Marine Environment Change in Hong Kong and Southern China. Hong Kong University Press, Hong Kong, pp. 479–515.
Minton R. L., Lydeard C. 2003. Phylogeny, taxonomy, genetics and global heritage ranks of an imperiled, freshwater snail genus Lithasia (Pleuroceridae). Mol. Ecol. 12: 75–87. https://doi.org/10.1046/j.1365-294X.2003.01719.x
Minton R. L., Lewis E. M., Netherland B., Hayes D. M. 2011. Large differences over small distances: plasticity in the shells of Elimia potosiensis (Gastropoda: Pleuroceridae). Int. J. Biol. 3: 23–32.
Minton R. L., Norwood A. P., Hayes D. M. 2008. Quantifying phenotypic gradients in freshwater snails: a case study in Lithasia (Gastropoda: Pleuroceridae). Hydrobiologia 605: 173–182. https://doi.org/10.1007/s10750-008-9332-1
NRC (National Research Council) 1927. International Critical Tables of Numerical Data, Physics, Chemistry, and Technology. McGraw-Hill, New York.
Ortmann A. E. 1920. Correlation of shape and station in freshwater mussels (naiades). Proc. Am. Phil. Soc. 59:269–312.
Osenberg C. W., Mittelbach G. G. 1989. Effects of body size on the predator-prey interaction between pumpkinseed sunfish and gastropods. Ecol. Mon. 59: 405–432. https://doi.org/10.2307/1943074
R Core Team 2017. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at https://www.R-project.org/.
Rasser M. W., Covich A. P. 2014. Predation on freshwater snails in Miocene Lake Steinheim: a trigger for intralacustrine evolution? Lethaia 47: 524–532. https://doi.org/10.1111/let.12078
Rohlf F. J. 2017. tpsDig2. Available at http://life.bio.sunysb.edu/morph/soft-dataacq.html.
Rohlf F. J., Slice D. 1990. Extensions of the Procrustes method for the optimal superimposition of landmarks. Syst. Biol. 39:40–59. https://doi.org/10.2307/2992207
Rosewater J. 1960. Geographic variation of Pleurocera canaliculata (Mollusca: Prosobranchia) in the Ohio River basin. Ph. D. thesis, Harvard University, Cambridge.
Scheiner S. M. 1993. Genetics and evolution of phenotypic plasticity. Annu. Rev. Ecol. Evol. S. 24:35–68. https://doi.org/10.1146/annurev.es.24.110193.000343
Seely R. H. 1986. Intense natural selection caused a rapid morphological transition in a living marine snail. P. Natl. Acad. Sci. USA 83: 6897–6901. https://doi.org/10.1073/pnas.83.18.6897
Sell H. 1908. Biologische Beobachtungen an Najades. Arch. Hydrobiol. Plankton. 1908: 179–188.
Sheets H. 2014. MakeFan8. Available at http://www3.canisius.edu/~sheets/IMP%208.htm.
Stearns S. C. 1989. Trade-offs in life-history evolution. Funct. Ecol. 3: 259–268. https://doi.org/10.2307/2389364
Stein C. B., Stansbery D. H. 1984. A systematic study of the morphological forms of ellipstomid snails in the Duck River, Tennessee, using electrophoretic analysis. Unpublished report submitted to the United States Fish and Wildlife Service, United States Department of the Interior, Washington D. C.
Tollrian R., Harvell C. D. 1999. The ecology and evolution of inducible defenses. Princeton University Press, Princeton.
Trussell G. C. 2000. Phenotypic clines, plasticity, and morphological trade-offs in an intertidal snail. Evolution 54: 151–166. https://doi.org/10.1111/j.0014-3820.2000.tb00016.x
Tryon G. W. 1873. Land and freshwater shells of North America. Part IV. Strepomatidae. Smithsonian Misc. Coll. 16: 1–435.
usgs (United States Geological Survey) 2017. Water resources. Available at http://water.usgs.gov.
Vannote R. L., Minshall G. W., Cummins K. W., Sedell J. R., Cushing C. E. 1990. The river continuum concept. Can. J. Fish. Aquat. Sci. 37: 130–137. https://doi.org/10.1139/f80-017
Whelan N. V., Johnson P. D., Harris P. M. 2012. Presence or absence of carinae in closely related populations of Leptoxis ampla (Anthony, 1855) (Gastropoda: Cerithioidea: Pleuroceridae) is not the result of ecophenotypic plasticity. J. Mollus. Stud. 78: 231–233. https://doi.org/10.1093/mollus/eys005
Zając K., Zając T., Ćmiel A. 2018. What can we infer from the shell dimensions of the thick-shelled river mussel Unio crassus? Hydrobiologia 810: 415–431. https://doi.org/10.1007/s10750-017-3098-2

Folia Malacologica (2018) 26: 95-102
First published on-line: 2018-06-05 00:00:00
https://doi.org/10.12657/folmal.026.007
Full text (.PDF) BibTeX Mendeley Back to list