Viviparus mamillatus (Küster, 1852), and partial congruence between the morphology-, allozyme- and DNA-based phylogeny in European Viviparidae (Caenogastropoda: Architaenioglossa)

Aleksandra Rysiewska

Department of Malacology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Cracow, Poland

Sebastian Hofman

Department of Comparative Anatomy, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Cracow, Poland

Artur Osikowski

Department of Animal Anatomy, Institute of Veterinary Science, University of Agriculture in Krakow, Cracow, Poland

Luboš Beran

Nature Conservation Agency of the Czech Republic, Regional Office Kokořínsko – Máchův kraj Protected Landscape Area Administration, Mělník, Czech Republic

Vladimir Pešić

Department of Biology, Faculty of Sciences, University of Montenegro, Cetinjski put b.b., 81000 Podgorica, Montenegro

Andrzej Falniowski, e-mail: andrzej.falniowski@uj.edu.pl

Department of Malacology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Cracow, Poland
Abstract

Shells and three DNA loci of Viviparus mamillatus (Küster, 1852), V. contectus (Millet, 1813), V. acerosus Bourguignat 1862 and V. viviparus (Linnaeus, 1758) were analysed. Despite slight morphological differences between the nominal species, and the near-absence of differences in nuclear 18SrRNA (18S) and histone 3 (H3) loci, mitochondrial cytochrome oxidase subunit I (COI) confirmed species distinctness of all but V. mamillatus. The latter should be synonymised with V. contectus. The comparison of COI-based phylogeny with the earlier, allozyme- and morphology-based, phylogenies suggests that V. contectus and V. viviparus are the most distantly related, in the DNA tree V. acerosus is closer to V. contectus, while in the allozyme and morphology-based tree – to V. viviparus.

Key words
species distinctness; shell; shell sculpture; radula; soft parts; mtDNA; COI
References

Cheverud J. M. 1988. A comparison of genetic and phenotypic correlations. Evolution 42: 958–968. https://doi.org/10.1111/j.1558-5646.1988.tb02514.x
David A. A., Zhou H., Lewis A., Yhann A., Verra S. 2017. DNA barcoding of the banded mystery snail, Viviparus georgianus in the Adirondacks with quantification of parasitic infection in the species. American Malacological Bulletin 35: 175–180. https://doi.org/10.4003/006.035.0211
Davis G. M. 1994. Molecular genetics and taxonomic discrimination. Nautilus 2 (suppl.): 3–23.
Dhora D. 2002. Studime mbi molusqet e Shqipërisë. Camaj-Pipa, Shkodër.
Ding B. Q., Gu Q. H., Husemann M., Xiong B. X. 2013. Contrasting patterns of diversification across Asia and Africa in the genus Bellamya (Mollusca: Gastropoda: Viviparidae) (unpublished). Available online from GenBank at https://www.ncbi.nlm.nih.gov/nuccore/KF535563 (accessed 12 December 2018)
Edgar R. C. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32: 1792–1797. https://doi.org/10.1093/nar/gkh340
Falniowski A. 1987. Hydrobioidea of Poland (Prosobranchia: Gastropoda). Folia Malacologica 1: 1–122. https://doi.org/10.12657/folmal.001.001
Falniowski A. 1989. Przodoskrzelne (Prosobranchia) Polski. I. Neritidae, Viviparidae, Valvatidae, Bithyniidae, Rissoidae, Aciculidae. Zeszyty Naukowe Uniwersytetu Jagiellońskiego, Prace Zoologiczne 35: 1–148.
Falniowski A. 1990. Anatomical characters and SEM structure of radula and shell in the species-level taxonomy of freshwater prosobranchs (Mollusca: Gastropoda: Prosobranchia): a comparative usefulness study. Folia Malacologica 4: 53–142. https://doi.org/10.12657/folmal.004.005
Falniowski A. 1992. Genus Bythinella Moquin-Tandon, 1855, in Poland (Gastropoda, Prosobranchia, Hydrobiidae. In: Gittenberger E., Goud J. (eds). Proceedings of 9th International Malacological Congress, Edinburgh, 31 August–4 September, 1986. Unitas Malacologica, Leiden: 135–138.
Falniowski A., Fiałkowski W., Szarowska M., Mazan K. 1998. Shell biometry characters in species discrimination and classification within the genus Viviparus (Gastropoda: Architaenioglossa: Viviparidae). Malakologische Abhandlungen Staatliches Museum für Tierkunde Dresden 19: 29–45.
Falniowski A., Kozik A., Szarowska M. 1993a. Two common European viviparid species hybridize. American Malacological Bulletin 10: 161–164.
Falniowski A., Kozik A., Szarowska M., Fiałkowski W., Mazan K. 1996a. Allozyme and morphology evolution in European Viviparidae (Mollusca: Gastropoda: Architaenioglossa). Journal of Zoological Systematics and Evolutionary Research 34: 49–62. https://doi.org/10.1111/j.1439-0469.1996.tb00810.x
Falniowski A., Kozik A., Szarowska M., Rąpała-Kozik M., Turyna I. 1993b. Morphological and allozymic poly­morphism and differences among local populations in Bradybaena fruticum (O. F. Müller, 1777) (Gastropoda: Stylommatophora: Helicoidea). Malacologia 35: 371–388.
Falniowski A., Mazan K., Szarowska M., Kozik A. 1997. Tracing the viviparid evolution: soft part morphology and opercular characters (Gastropoda: Architaenioglossa: Viviparidae). Malakologische Abhandlungen Staatliches Museum für Tierkunde Dresden 18: 193–211.
Falniowski A., Szarowska M., Mazan K. 1996b. Embryonic shells of Viviparus – what they may tell us about taxonomy and phylogeny? (Gastropoda: Architaenioglossa: Viviparidae). Malakologische Abhandlungen Staatliches Museum für Tierkunde Dresden 18: 35–42.
Falniowski A., Szarowska M., Mazan K. 1996c. Tracing the viviparid evolution: radular characters (Gastropoda: Architaenioglossa: Viviparidae). Malakologische Abhandlungen Staatliches Museum für Tierkunde Dresden 18: 43–52.
Fretter V., Graham A. 1962. British prosobranch molluscs. Their functional anatomy and ecology. Ray Society, London.
Giribet G., Wheeler W. C. 2002. On bivalve phylogeny: a high-level analysis of the Bivalvia (Mollusca) based on combined morphology and DNA sequence data. Invertebrate Biology 121: 271–324. https://doi.org/10.1111/j.1744-7410.2002.tb00132.x
Giusti F., Manganelli G. 1992. The problem of the species in malacology after clear evidence of the limits of morphological systematics. In: Gittenberger E., Goud J. (eds). Proceedings of 9th International Malacological Congress, Edinburgh, 31 August–4 September, 1986. Unitas Malacologica, Leiden: 153–172.
Glöer P., Georgiev D. 2014. Redescription of Viviparus sphaeridius Bourguignat 1880 with an identification key of the European Viviparus species (Gastropoda: Viviparidae). Ecologica Montenegrina 1: 96–102.
Glöer P., Pešić V. 2007. The freshwater gastropods of the Skadar Lake with the description of Valvata montenegrina n. sp. (Mollusca, Gastropoda, Valvatidae). In: Pavičevič D., Perreau M. (eds). Advances in the studies of the fauna of the Balkan Peninsula. Papers dedicated to the memory of Guido Nonveiller. Institute for Nature Conservation of Serbia, Monograph, Belgrade, No. 22: 325–332.
Haase M. 1994. Differentiation of selected species of Belgrandiella and the redefined genus Graziana (Gastropoda: Hydrobiidae). Zoological Journal of the Linnean Society 111: 219–246. https://doi.org/10.1111/j.1096-3642.1994.tb01484.x
Hall T. A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95–98.
Haszprunar G. 1988. On the origin and evolution of major gastropod groups, with special reference to the Streptoneura. Journal of Molluscan Studies 54: 367–441. https://doi.org/10.1093/mollus/54.4.367
Jørgensen A., Kristensen T. K., Madsen H. 2008. A molecular phylogeny of apple snails (Gastropoda, Caenogastropoda, Ampullariidae) with an emphasis on African species. Zoologica Scripta 37: 245–252. https://doi.org/10.1111/j.1463-6409.2007.00322.x
Küster H. C. 1852. Die Gattungen Paludina, Hydrocaena und Valvata. In: Abbildungen nach der Natur mit Beschreibungen. Systematisches Conchylien-Cabinet von Martini und Chemnitz 1 (21), Bauer und Raspe, Nürnberg.
Larson A. 1989. The relationship between speciation and morphological evolution. In: Otte D., Endler J. A. (eds). Speciation and its consequences. Sinauer Associates Inc., Sunderland, Massachusetts, pp. 579–598.
Miller M. A., Pfeiffer W., Schwartz T. 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Proceedings of the Gateway Computing Environments Workshop (GCE), 14 November 2010, New Orleans, LA: 1–8. https://doi.org/10.1109/GCE.2010.5676129
Omland K. E. 1994. Character congruence between a molecular and a morphological phylogeny for dabbling ducks (Anas). Systematic Biology 43: 369–386. https://doi.org/10.1093/sysbio/43.3.369
Ronquist F., Teslenko M., van der Mark P., Ayres D., Darling A., Hohna S., Larget B., Liu L., Suchard M. A., Huelsenbeck J. P. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539–542. https://doi.org/10.1093/sysbio/sys029
Schütt H. 1962. Neue Süsswasser-Prosobranchier Griechenlands. Archiv für Molluskenkunde 91: 157–166.
Sengupta M. E., Kristensen T. K., Madsen H., Jørgensen A. 2009. Molecular phylogenetic investigations of the Viviparidae (Gastropoda: Caenogastropoda) in the lakes of the Rift Valley area of Africa. Molecular Phylogenetics and Evolution. 52: 797–805. https://doi.org/10.1016/j.ympev.2009.05.007
Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 1312–1313. https://doi.org/10.1093/bioinformatics/btu033
Szarowska M., Osikowski A., Hofman S., Falniowski A. 2016. Pseudamnicola Paulucci, 1878 (Caenogastropoda: Truncatelloidea) from the Aegean Islands: a long or short story? Organisms Diversity & Evolution 16: 121–139. https://doi.org/10.1007/s13127-015-0235-5
Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. 2013. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony method. Molecular Biology and Evolution 28: 2731–2739. https://doi.org/10.1093/molbev/msr121
Van Bocxlaer B., Strong E. E., Richter R., Stelbrink B., Rintelen T. von 2018. Anatomical and genetic data reveal that Rivularia Heude, 1890 belongs to Viviparinae (Gastropoda: Viviparidae). Zoological Journal of the Linnean Society 182: 1–23. https://doi.org/10.1093/zoolinnean/zlx014
Wang J. G., Zhang D., Jakovlic I., Wang W. M. 2017. Sequencing of the complete mitochondrial genomes of eight freshwater snail species exposes pervasive paraphyly within the Viviparidae family (Caenogastropoda). PLoS ONE 12: E0181699. https://doi.org/10.1371/journal.pone.0181699
Welter-Schultes F. W. 2012. European non-marine molluscs, a guide for species identification. Planet Poster Editions, Göttingen.
Xia X. 2000. Data analysis in molecular biology and evolution. Kluwer Academic Publishers, Boston, Dordrecht & London.
Xia X. 2013. DAMBE: A comprehensive software package for data analysis in molecular biology and evolution. Molecular Biology and Evolution 30: 1720–1728. https://doi.org/10.1093/molbev/mst064
Xia X., Xie Z., Salemi M., Chen L., Wang Y. 2003. An index of substitution saturation and its application. Molecular Phylogenetics and Evolution 26: 1–7. https://doi.org/10.1016/S1055-7903(02)00326-3

Folia Malacologica (2019) 27: 43-51
First published on-line: 2019-03-19 00:00:00
https://doi.org/10.12657/folmal.027.004
Full text (.PDF) BibTeX Mendeley Back to list