Species distinctness of Bithynia cettinensis Clessin, 1887 and B. zeta Glöer et Pešić, 2007 (Caenogastropoda: Truncatelloidea)

Vladimir Pešić

Department of Biology, Faculty of Sciences, University of Montenegro, Cetinjski put b.b., 81000 Podgorica, Montenegro

Sebastian Hofman, e-mail: s.hofman@uj.edu.pl

Department of Comparative Anatomy, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland

Aleksandra Rysiewska, e-mail: a.rysiewska@uj.edu.pl

Department of Malacology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland

Artur Osikowski, e-mail: a.osikowski@urk.edu.pl

Department of Animal Anatomy, Institute of Veterinary Science, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059 Kraków, Poland

Andrzej Falniowski, e-mail: andrzej.falniowski@uj.edu.pl

Department of Malacology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland

Shells of Bithynia: widely distributed B. tentaculata (Linnaeus), Balkan B. cettinensis Clessin from Cetina River in Croatia, and B. zeta Glöer et Pešić from Vitoja spring at Lake Skadar, Montenegro, as well as male genitalia of B. zeta and B. cettinensis were examined. The shells of all three taxa are similar, also the penes differ only slightly. The mean value of the length ratio of the tubular penial gland (measured along its curvature) to the penis right arm, measured along the curvature of its right margin, was 1.63 for B. zeta, and 1.33 for B. cettinensis. Those values differed slightly, especially compared to 5.0–5.9 for B. tentaculata. In the maximum likelihood (ML), as well as Bayesian (BI) trees, B. cettinensis and B. tentaculata were sister clades with p-distance of 0.007, and B. zeta was more distinct, with p-distance of 0.122 to B. cettinensis and 0.154 to B. tentaculata. The species distinctness of the three studied taxa was confirmed.

Key words
species distinctness; shell; penis; tubular penial gland; mtDNA; COI

Benke M., Brandle M., Albrecht C., Wilke T. 2009. Pleistocene phylogeography and phylogenetic concordance in cold-adapted spring snails (Bythinella spp.). Molecular Ecology 18: 890–903. https://doi.org/10.1111/j.1365-294X.2008.04073.x
Clessin S. 1887. Beitrag zur Fauna der Binnen-Mollusken Dalmatiens. Malakologische Blätter N. F. pl. ix, p. 62: 43–65.
Edgar R. C. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32: 1792–1797. https://doi.org/10.1093/nar/gkh340
Falniowski A. 1989. Przodoskrzelne (Prosobranchia) Polski. I. Neritidae, Viviparidae, Valvatidae, Bithyniidae, Rissoidae, Aciculidae. Zeszyty Naukowe Uniwersytetu Jagiellońskiego, Prace Zoologiczne 35: 1–148.
Falniowski A. 1990. Anatomical characters and SEM structure of radula and shell in the species-level taxonomy of freshwater prosobranchs (Mollusca: Gastropoda: Prosobranchia): a comparative usefulness study. Folia Malacologica 4: 53–142 + 78 tab. fot. https://doi.org/10.12657/folmal.004.005
Falniowski A., Szarowska M., Glöer P., Pešić V., Georgiev D., Horsák M., Sîrbu I. 2012. Radiation in Bythinella (Mollusca: Gastropoda: Rissooidea) in the Balkans. Folia Malacologica 20: 1–10. https://doi.org/10.2478/v10125-012-0006-2
Folmer O., Black M., Hoeh W., Lutz R. A., Vrijenhoek R. C. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3: 294–299.
Fretter V., Graham A. 1962. British prosobranch molluscs. Their functional anatomy and ecology. Ray Society, London.
Glöer P., Beran L. 2009. Redescription of Bithynia cettinensis Clessin, 1887 (Gastropoda: Bithyniidae). Mollusca 27: 109–111.
Glöer P., Falniowski A., Pešić V. 2009. The Bithyniidae of Greece (Gastropoda: Bithynidae). Journal of Conchology 40: 1–9.
Glöer P., Pešić V. 2007. The Bithynia species from Skadar Lake (Montenegro) (Gastropoda: Bithyniidae). Mollusca 25: 7–12.
Glöer P., Rolán E. 2007. Bithynia majorcina, a new species from the Balearics (Gastropoda: Bithyniidae). In: Beckmann K.-H. (ed.). Die Land- und Süsswassermollusken der Balearischen Inseln. ConchBooks, Hackenhein, pp. 159–162.
Glöer P., Yildirim Z. 2006. Some records of Bithyniidae from Turkey with the description of Bithynia pesicii n. sp. (Gastropoda: Bithyniidae). Malakologische Abhandlungen, Staatliches Museum für Tierkunde Dresden 24: 37–42.
Hall T. A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95–98.
Hershler R., Ponder W. F. 1998. A review of morphological characters of hydrobioid snails. Smithsonian Contributions to Zoology 600: 1–55. https://doi.org/10.5479/si.00810282.600
Kulsantiwong J., Prasopdee S., Ruangsittichai J., Ruangjirachuporn W., Boonmars T., Viyanant V., Pierossi P., Hebert P. D., Tesana S. 2013. DNA barcode identification of freshwater snails in the family Bithyniidae from Thailand. PLoS ONE 8: e79144. https://doi.org/10.1371/journal.pone.0079144
Lilly M. M. 1953. The mode of life and the structure and functioning of the reproductive ducts of Bithynia tenta­culata (L.). Proceedings of the Malacological Society of London 30: 87–110.
Miller M. A., Pfeiffer W., Schwartz T. 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Proceedings of the Gateway Computing Environments Workshop (GCE), 14 Nov., New Orleans, LA: 1–8. https://doi.org/10.1109/GCE.2010.5676129
Ronquist F., Teslenko M., Mark P. van der, Ayres D., Darling A., Hohna S., Larget B., Liu L., Suchard M. A., Huelsenbeck J. P. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539–542. https://doi.org/10.1093/sysbio/sys029
Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 1312–1313. https://doi.org/10.1093/bioinformatics/btu033
Szarowska M. 2006. Molecular phylogeny, systematics and morphological character evolution in the Balkan Rissooidea (Caenogastropoda). Folia Malacologica 14: 99–168. https://doi.org/10.12657/folmal.014.014
Szarowska M., Hofman S., Osikowski A., Falniowski A. 2014. Heleobia maltzani (Westerlund, 1886) (Caeno­gastropoda: Truncatelloidea: Cochliopidae) from Crete and species-level diversity of Heleobia Stimpson, 1865 in Europe. Journal of Natural History 48: 2487–2500. https://doi.org/10.1080/00222933.2014.946109
Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. 2013. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony method. Molecular Biology and Evolution 28: 2731–2739. https://doi.org/10.1093/molbev/msr121
Van Bocxlaer B., Strong E. E., Richter R., Stelbrink B., von Rintelen T. 2017. Anatomical and genetic data reveal that Rivularia Heude, 1890 belongs to Viviparinae (Gastropoda: Viviparidae). Zoological Journal of the Linnaean Society 182: 1–23. https://doi.org/10.1093/zoolinnean/zlx014
Wilke T., Davis G. M. 2000. Infraspecific mitochondrial sequence diversity in Hydrobia ulvae and Hydrobia ventrosa (Hydrobiidae: Rissoacea: Gastropoda): Do their different life histories affect biogeographic patterns and gene flow? Biological Journal of the Linnean Society 70: 89–105. https://doi.org/10.1006/bijl.1999.0388
Xia X. 2000. Data analysis in molecular biology and evolution. Kluwer Academic Publishers, Boston, Dordrecht & London.
Xia X. 2013. DAMBE5: A comprehensive software package for data analysis in molecular biology and evolution. Molecular Biology and Evolution 30: 1720–1728. https://doi.org/10.1093/molbev/mst064
Xia X., Xie Z., Salemi M., Chen L., Wang Y. 2003. An index of substitution saturation and its application. Molecular Phylogenetics and Evolution 26: 1–7. https://doi.org/10.1016/S1055-7903(02)00326-3

Folia Malacologica (2019) 27: 111-118
First published on-line: 2019-06-12 00:00:00
Full text (.PDF) BibTeX Mendeley Back to list