RESEARCH PAPER
Correlated phenotypic responses to habitat difference in Cepaea nemoralis (L.)
 
More details
Hide details
1
Department of Animal and Plant Sciences, University of Sheffield, United Kingdom
 
2
Department of Zoology, The Natural History Museum, London, United Kingdom
 
3
Faculty of Life Sciences, The University of Manchester, United Kingdom
 
 
Submission date: 2012-03-02
 
 
Final revision date: 2012-06-12
 
 
Acceptance date: 2012-06-16
 
 
Publication date: 2020-04-08
 
 
Corresponding author
Laurence M. Cook   

Faculty of Life Sciences, The University of Manchester, M13 9PT Manchester, United Kingdom
 
 
Folia Malacol. 2012;20(4):255-263
 
KEYWORDS
ABSTRACT
Using data from the Evolution Megalab Project paired samples of Cepaea nemoralis (L.) coming respectively from woodland and open habitats have been examined for joint response to habitat difference at different polymorphic loci. Throughout the range of the species there is a tendency for open habitat samples to have different frequencies at shell colour and pattern loci from those in neighbouring woods. In Britain, the chance that the frequency of yellow is higher in open than in wooded habitats is about 67 per cent. There is a 41 per cent chance that they will have both higher frequency of yellow and a lower frequency of unbanded at the linked banding locus. Responses of unbanded and the unlinked mid-banded locus are to a large extent independent, however. The chance that open habitats have higher yellow and a lower value for the sum of unbanded and mid-banded (effectively unbanded) is 42 per cent, while the chance that the open habitat sample is more yellow, less unbanded and less mid-banded is no more than 19 per cent. The colour, but not the banding difference was also found in the data for continental Europe. The effect of habitat acts within a polymorphic system. For Britain closely spaced sample pairs have an average frequency difference (Euclideandistance) between habitats at the three loci of about 0.26. As a result of other factors affecting the polymorphism this difference increases to 0.43 for pairs 1 km apart and 0.59 at 10 km apart. These results extend the original findings of CAIN & SHEPPARD (1954) and others but show clearly that the habitat is only part of the explanation for polymorphismin Cepaea.
 
REFERENCES (23)
1.
Cain A. J., Currey J. D. 1963. Area effects in Cepaea. Phil. Trans. R. Soc. Lond. B 246: 1-81. https://doi.org/10.1098/rstb.1....
 
2.
Cain A. J., Sheppard P. M. 1950. Selection in the polymorphic land snail Cepaea nemoralis. Heredity 4: 275-294. https://doi.org/10.1038/hdy.19....
 
3.
Cain A. J., Sheppard P. M. 1954. Natural selection in Cepaea. Genetics 39: 89-116.
 
4.
Cameron R. A. D., Cook L. M. 2012. Habitat and the shell polymorphism of Cepaea nemoralis (L.): interrogating the Evolution Megalab database. J. Moll. Stud. https://doi.org/10.1093/mollus....
 
5.
Cameron R. A. D., Dillon P. J. 1984. Habitat stability, population histories and patterns of variation in Cepaea. Malacologia 25: 271-291.
 
6.
Cameron R. A. D., Ożgo M., Horsák M., Bogucki Z. 2011. At the north-eastern extremity: variation in Cepaea nemoralis (L) around Gdańsk, northern Poland. Biologia 66: 1097-1113. https://doi.org/10.2478/s11756....
 
7.
Cameron R. A. D., Pannett D. J. 1985. Interaction between area effects and variation with habitat in Cepaea. Biol. J. Linn. Soc. 24: 365-379. https://doi.org/10.1111/j.1095....
 
8.
Carter M. A. 1968. Studies on Cepaea. II. Area effects and visual selection in Cepaea nemoralis (L.) and Cepaea hortensis. Phil. Trans. R. Soc. Lond. B 253: 397-446. https://doi.org/10.1098/rstb.1....
 
9.
Clarke B. 1962. Natural selection in mixed populations of two polymorphic snails. Heredity 17: 319-345. https://doi.org/10.1038/hdy.19....
 
10.
Cook L. M. 1998. A two-stage model for Cepaea polymorphism. Phil. Trans. R. Soc. Lond. B 353: 1577-1593. https://doi.org/10.1098/rstb.1....
 
11.
Cook L. M. 2005. Disequilibrium in some Cepaea populations. Heredity 94: 497-500. https://doi.org/10.1038/sj.hdy....
 
12.
Cook L. M. 2008. Variation with habitat in Cepaea nemoralis: the Cain & Sheppard diagram. J. Moll. Stud. 74: 239-243. https://doi.org/10.1093/mollus....
 
13.
Currey J. D., Arnold R. W., Carter M. A. 1964. Further examples of variation of populations of Cepaea nemoralis with habitat. Evolution 18: 111-117. https://doi.org/10.1111/j.1558....
 
14.
Dennis R. L. H. 2010. A resource-based habitat view for conservation. Wiley-Blackwell, Chichester, UK. https://doi.org/10.1002/978144....
 
15.
Elton C., Miller R. S. 1954. The ecological survey of animal communities; with a practical system of classifying habitats by structural characters. J. Ecol. 42: 460-496. https://doi.org/10.2307/225687....
 
16.
Greenwood J. J. D. 1974. Visual and other selection in Cepaea: a further example. Heredity 33: 17-22. https://doi.org/10.1038/hdy.19....
 
17.
Lamotte M. 1951. Recherches sur la structure génétique des populations naturelles de Cepaea nemoralis (L.). Bull. Biol. Fr. Belg. Suppl. 35: 1-239.
 
18.
Lamotte M. 1966. Les facteurs de la diversité du polymorphisme dans les populations naturelles de Cepaea nemoralis (L.). Lav. Soc. Malac. Ital. 3: 33-73.
 
19.
Odum E. P. 1959. Fundamentals of ecology. W. B. Saunders, Philadelphia.
 
20.
Ożgo M. 2011. Rapid evolution in unstable habitats; a success story of the polymorphic land snail Cepaea nemoralis (Gastropoda: Pulmonata). Biol. J. Linn. Soc. 102: 251-262. https://doi.org/10.1111/j.1095....
 
21.
Ożgo M., Bogucki Z. 2011. Colonization, stability, and adaptation in a transplant experiment of the polymorphic land snail Cepaea nemoralis (Gastropoda: Pulmonata) at the edge of its geographical range. Biol. J. Linn. Soc. 104: 462-470. https://doi.org/10.1111/j.1095....
 
22.
Silvertown J., Cook L. M., Cameron R. A. D., Dodd M., McConway K., Worthington J., Skelton P., Anton C., Bossdorf O., Baur B., Schilthuizen M., Fontaine B., Sattmann H., Bertorelle G., Correia M., Oliveira C., Pokryszko B., Ożgo M., Stalažs A., Gill E., Rammul Ü., Sólymos P., Féher Z., Juan X. 2011. Citizen science reveals unexpected continental-scale evolutionary change in a model organism. PLoS ONE 6(4): e18927. https://doi.org/10.1371/journa....
 
23.
Worthington J. P., Silvertown J., Cook L. M., Cameron R. A. D., Dodd M., Greenwood R. M., McConway K., Jones J. S., Skelton P. 2011 Evolution MegaLab: a case-study in citizen science methods. Meth. Ecol. Evol. https://doi.org/10.1111/j.2041....
 
 
CITATIONS (12):
1.
Differential shell strength of Cepaea nemoralis colour morphs—implications for their anti-predator defence
Zuzanna Rosin, Jarosław Kobak, Andrzej Lesicki, Piotr Tryjanowski
Naturwissenschaften
 
2.
Morph frequency in British Cepaea nemoralis: what has changed in half a century?
Laurence Cook
Journal of Molluscan Studies
 
3.
Shell colour, temperature, (micro)habitat structure and predator pressure affect the behaviour of Cepaea nemoralis
Zuzanna Rosin, Zbigniew Kwieciński, Andrzej Lesicki, Piotr Skórka, Jarosław Kobak, Anna Szymańska, Tomasz Osiejuk, Tomasz Kałuski, Monika Jaskulska, Piotr Tryjanowski
The Science of Nature
 
4.
Colour and pattern disequilibrium inCepaea nemoralison a northern European transect
Laurence Cook, Małgorzata Ożgo
Biological Journal of the Linnean Society
 
5.
Rapid, habitat-related evolution of land snail colour morphs on reclaimed land
M Schilthuizen
Heredity
 
6.
Selection and disequilibrium inCepaea nemoralis
Laurence Cook
Biological Journal of the Linnean Society
 
7.
Recombination within the Cepaea nemoralis supergene is confounded by incomplete penetrance and epistasis
Daniel Gonzalez, Amaia Aramendia, Angus Davison
Heredity
 
8.
Patterns of spatio-temporal variation in land snails: a multi-scale approach
Sergey Kramarenko
Folia Malacologica
 
9.
Reflections on molluscan shell polymorphisms
Laurence Cook
Biological Journal of the Linnean Society
 
10.
The poor relation? Polymorphism in Cepaea hortensis (O. F. Müller) and the Evolution Megalab
Robert Cameron
Journal of Molluscan Studies
 
11.
Recombination within the Cepaea nemoralis supergene is confounded by incomplete penetrance and epistasis
Daniel Gonzalez, Amaia Aramendia, Angus Davison
 
12.
Inversion breakpoints and the evolution of supergenes
Romain Villoutreix, Diego Ayala, Mathieu Joron, Zachariah Gompert, Jeffrey Feder, Patrik Nosil
Molecular Ecology
 
eISSN:2300-7125
ISSN:1506-7629
Journals System - logo
Scroll to top