RESEARCH PAPER
Surface crawling and pedal surface collecting in aquatic gastropods: A case of scientific amnesia
 
 
More details
Hide details
1
School of Biological Science, Washington State University, Pullman WA, USA
 
2
Department of Biology, Purdue University Fort Wayne, Fort Wayne IN, USA
 
 
Submission date: 2022-07-07
 
 
Final revision date: 2022-09-14
 
 
Acceptance date: 2022-09-16
 
 
Online publication date: 2022-10-21
 
 
Corresponding author
Winfried S. Peters   

School of Biological Science, Washington State University, Pullman WA 99614, USA
Department of Biology, Purdue University Fort Wayne, Fort Wayne IN 46835, USA
 
 
Folia Malacol. 2022;30(4):211-220
 
KEYWORDS
ABSTRACT
Aquatic gastropods, both freshwater and marine, often crawl along the water surface with the sole of the foot facing upward. Differential regulation of the activity of cilia on the sole turns the gliding mechanism into pedal surface collecting, by which food particles floating on the water are collected on the sole. Over the last 300 years, surface crawling and pedal surface collecting have been studied in numerous species, but the accumulated knowledge has fallen victim to scientific amnesia. Today, pedal surface collecting usually is considered a unique behaviour that evolved in the family Ampullariidae (Caenogastropoda), which includes the genus Pomacea with some of the globally worst invasive pests. Consequently it may appear feasible to tackle invasive Pomacea species specifically by delivering molluscicides via the water surface. Based on a review of our forgotten literature, I here argue that such an approach would have potentially devastating, unintended effects on native gastropod faunas.
 
REFERENCES (82)
1.
Aono K., Fusada A., Fusada Y., Shii W., Kanaya Y., Komuro M., Matsui K., Meguro S., Miyamae A., Miyamae Y., Murata A., Narita S., Nozaka H., Saito W., Watanabe A., Nishikata K., Kanazawa A., Fujito Y., Yamagishi M., Abe T., Nagayama M., Uchida T., Gohara K., Lukowiak K., Ito E. 2008. Upside-down gliding in Lymnaea. Biological Bulletin 215: 272–279. https://doi.org/10.2307/254707....
 
2.
Ball P. 2008. How to walk on water. https://www.nature.com/article..., accessed 23 June 2022. https://doi.org/10.1038/news.2....
 
3.
Bradley R. 1721. A philosophical account of the works of nature. W. Mears, London, UK. https://archive.org/details/ap....
 
4.
Brockmeier H. 1887. Eine neue Erklärung für das Schwimmen mancher Schnecken an der Oberfläche des Wassers. Nachrichtsblatt der Deutschen Malako­zoologischen Gesellschaft 19: 111–118. https://www.biodiversitylibrar....
 
5.
Brockmeier H. 1898. Süsswasserschnecken als Plankton­fischer. Forschungsberichte aus der Biologischen Stat­ion zu Plön 6(II): 165. https://www.biodiversitylibrar....
 
6.
Buddie A. G., Rwomushana I., Offord L. C., Kibet S., Makale F., Djeddour D., Cafa G., Vincent K. K., Muvea A. M., Chacha D., Day R. K. 2021. First report of the invasive snail Pomacea canaliculata in Kenya. CABI Agriculture and Bioscience 2: 11. https://doi.org/10.1186/s43170....
 
7.
Car L. 1897. Ueber den Mechanismus der Lokomotion der Pulmonaten. Biologisches Centralblatt 17: 426–438. https://www.biodiversitylibrar....
 
8.
Carlson A. J. 1905. The physiology of locomotion in gasteropods. Biological Bulletin 8: 85–92. https://doi.org/10.2307/153585....
 
9.
Carlsson N. O. L., Brönmark C., Hansson L.-A. 2004. Invading herbivory: the golden apple snail alters ecosystem functioning in Asian wetlands. Ecology 85: 1575–1580. https://doi.org/10.1890/03-314....
 
10.
Cattau C. E., Martin J., Kitchens W. M. 2010. Effects of an exotic prey species on a native specialist: example of the snail kite. Biological Conservation 143: 513–520. https://doi.org/10.1016/j.bioc....
 
11.
Cazzaniga N. J., Estebenet A. L. 1984. Revisión y notas sobre los hábitos alimentarios de los Ampullariidae (Gastropoda). Historia Natural 4: 213–224.
 
12.
Cheesman D. F. 1956. The snail’s foot as a Langmuir trough. Nature 176: 987–988. https://doi.org/10.1038/178987....
 
13.
Chen R.-S., Wang K.-L., Wu C.-Y. 2012. Assessment of the camellia seed meal impact on loaches in paddy fields. Paddy and Water Environment 10: 291–300. https://doi.org/10.1007/s10333....
 
14.
Christensen C. C., Cowie R. H., Yeung N. W., Hayes K. A. 2021. Biological control of pest non-marine molluscs: a Pacific prespective on risks to non-target organisms. Insects 12: 583. https://doi.org/10.3390/insect....
 
15.
Conner S. L., Pomory C. M., Darby P. C. 2008. Density effects of native and exotic snails on growth in juvenile apple snails Pomacea paludosa (Gastropoda: Ampullariidae): a laboratory experiment. Journal of Molluscan Studies 74: 355–362. https://doi.org/10.1093/mollus....
 
16.
Cook P. M. 1949. A ciliary feeding mechanism in Viviparus viviparus. Proceedings of the Malacological Society, London 27: 265–271. https://doi.org/10.1093/oxford....
 
17.
Copeland M. 1919. Locomotion in two species of the gastropod genus Alectrion with observations on the behavior of pedal cilia. Biological Bulletin 37: 126–138. https://doi.org/10.2307/153635....
 
18.
Copeland M. 1922. Ciliary and muscular locomotion in the gastropod genus Polinices. Biological Bulletin 42: 132–142. https://doi.org/10.2307/153657....
 
19.
Cowie R. H., Dillon R. T. jr., Robinson D. G., Smith J. W. 2009. Alien non-marine snails and slugs of priority quarantine importance in the United States: a preliminary risk assessment. American Malacological Bulletin 27: 113–132. https://doi.org/10.4003/006.02....
 
20.
Davison A., Neiman M. 2021. Mobilizing molluscan models and genomes in biology. Philosophical Transactions B 376: 20200163. https://doi.org/10.1098/rstb.2....
 
21.
Dawson J. 1911. The biology of Physa. Behavior Monographs 1(4): 1–120 (with 10 separate figures). https://www.biodiversitylibrar....
 
22.
Declerck C. H. 1995. The evolution of suspension feeding in gastropods. Biological Reviews 70: 549–569. https://doi.org/10.1111/j.1469....
 
23.
Deliagina T. G., Orlovsky G. N. 1990a. Control of locomotion in the freshwater snail Planorbis corneus. I. Locomotory repertoire of the snail. Journal of Experimental Biology 152: 389–404. https://doi.org/10.1242/jeb.15....
 
24.
Deliagina T. G., Orlovsky G. N. 1990b. Control of locomotion in the freshwater snail Planorbis corneus. II. Differential control of various zones of the ciliated epithelium. Journal of Experimental Biology 152: 405–423. https://doi.org/10.1242/jeb.15....
 
25.
de Quatrefages A. 1843. Mémoire sur l’Eolidine paradoxale (Eolidina paradoxum Nob.). Annales des Sciences Naturelles (Seconde Série) 19: 274–312. https://www.biodiversitylibrar....
 
26.
Dillon R. T. 2000. The ecology of freshwater molluscs. Cambridge University Press, Cambridge, UK.
 
27.
Dimon A. C. 1905. The mud snail: Nassa obsoleta (Cold Spring Harbor Monographs 5). Brooklyn Institute of Arts and Sciences, Brooklyn NY, USA.
 
28.
Fodor I., Hussein A. A. A., Benjamin P. R., Koene J. M., Pirger Z. 2020. The natural history of model organisms. The unlimited potential of the great pond snail, Lymnaea stagnalis. eLife 9: e56962. https://doi.org/10.7554/eLife.....
 
29.
Frömming E. 1956. Biologie der mitteleuropäischen Süß­wasserschnecken. Dunker & Humblot, Berlin.
 
30.
Gould J., Valdez J. W. 2021. Locomotion with a twist: aquatic beetle walks upside down on the underside of the water’s surface. Ethology 127: 669–673. https://doi.org/10.1111/eth.13....
 
31.
Halwart M. 1994. The golden apple snail Pomacea canaliculata in Asian rice farming systems: present impact and future threat. International Journal of Pest Management 40: 199–206. https://doi.org/10.1080/096708....
 
32.
Hayes K. A., Burks R. L., Castro-Vazquez A., Darby P. C., Heras H., Martín P. R., Qiu J.-W., Thiengo S. C., Vega I. A., Wada T., Yusa Y., Burela S., Cadierno M. P., Cueto J. A., Dellagnola F. A., Dreon M. S., Frassa M. V., Giraud-Billoud M., Godoy M. S., Ituarte S., Koch E., Matsukura K., Pasquevich M. Y., Rodriguez C., Saveanu L., Seuffert M. E., Strong E. E., Sun J., Tamburi N. E., Tiecher M. J., Turner R. L., Valentine-Darby P. L., Cowie R. H. 2015. Insights from an integrated view of the biology of apple snails (Caenogastropoda: Ampullariidae). Malacologia 58: 245–302. https://doi.org/10.4002/040.05....
 
33.
Hayes K. A., Cowie R. H., Jørgensen A., Schultheiß R., Albrecht C., Thiengo S. C. 2009. Molluscan models in evolutionary biology: apple snails (Gastropoda: Ampullariidae) as a system for addressing fundamental questions. American Malacological Bulletin 27: 47–58. https://doi.org/10.4003/006.02....
 
34.
Hayes K. A., Joshi R. C., Thiengo S. C., Cowie R. H. 2008. Out of South America: multiple origins of non-native apple snails in Asia. Diversity and Distributions 14: 701–712. https://doi.org/10.1111/j.1472....
 
35.
Höckelmann C., Pusch M. 2000. The respiration and filter-feeding rates of the snail Viviparus viviparus (Gastropoda) under simulated stream conditions. Archiv für Hydrobiologie 149: 553–568. https://doi.org/10.1127/archiv....
 
36.
Horgan F. G. 2018. The ecophysiology of apple snails in rice: implications for crop management and policy. Annals of Applied Biology 172: 245–267. https://doi.org/10.1111/aab.12....
 
37.
Horgan F. G., Bernal C. C., Letana S., Naredo A. I., Ramp D., Almazan M. L. P. 2018. Reduced efficiency of tropical flies (Diptera) in the decomposition of snail cadavers following molluscicide poisoning. Applied Soil Ecology 129: 61–71. https://doi.org/10.1016/j.apso....
 
38.
Horgan F. G., Stuart A. M., Kudavidanage E. P. 2012. Impact of invasive apple snails on the functioning and services of natural and managed wetlands. Acta Oecologica 54: 90–100. https://doi.org/10.1016/j.acta....
 
39.
Hutchinson G. E. 1993. A treatise in limnology. Volume IV: The zoobenthos. John Wiley & Sons, New York, USA.
 
40.
Imbler S. 2021. You won’t believe how this beetle walks on water. The New York Times 26 July 2021. https://www.nytimes.com/2021/0..., accessed 23 June 2022.
 
41.
Johnson B. M. 1952. Ciliary feeding in Pomacea paludosa (Say). Nautilus 66: 3–5. https://www.biodiversitylibrar....
 
42.
Johnston G. 1850. An introduction to conchology; or, elements of the natural history of molluscous animals. John van Voorst, London, UK. https://www.biodiversitylibrar....
 
43.
Jordan H. 1901. Die Physiologie der Locomotion bei Aplysia limacina. R. Oldenbourg, München, Germany. https://www.biodiversitylibrar....
 
44.
Joo S., Jung S., Lee S., Cowie R. H., Takagi D. 2020. Freshwater snail feeding: lubrication-based particle collection on the water surface. Journal of the Royal Society Interface 17: 20200139. https://doi.org/10.1098/rsif.2....
 
45.
Kaiser P. 1960. Die Leistungen des Flimmerepithels bei der Fortbewegung der Basommatophoren. Zeitschrift für Wissenschaftliche Zoologie 162: 368–393.
 
46.
Kwong K. L., Dudgeon D., Wong P. K., Qiu J.-W. 2010. Secondary production and diet of an invasive snail in freshwater wetlands: implications for resource utilization and competition. Biological Invasions 12: 1153–1164. https://doi.org/10.1007/s10530....
 
47.
Lee S., Bush J. W. M., Hosoi A. E., Lauga E. 2008. Crawling beneath the free surface: water snail locomotion. Physics of Fluids 20: 082106. https://doi.org/10.1063/1.2960....
 
48.
Lister M. 1694. Exercitatio anatomica. S. Smith & B. Walford, London, UK. https://www.biodiversitylibrar....
 
49.
Lombardo P., Miccoli F. P., Cichy A., Stanicka A., Żbikowska E. 2021. No effects of waterproof marking on the behaviour and growth of Physa acuta Draparnaud, 1805 (Gastropoda: Hygrophila: Physidae) in the laboratory. Folia Malacologica 29: 121–131. https://doi.org/10.12657/folma....
 
50.
Longley R. D., Peterman M. 2013. Neuronal control of pedal sole cilia in the pond snail Lymnaea stagnalis appressa. Journal of Comparative Physiology A 199: 71–86. https://doi.org/10.1007/s00359....
 
51.
Louda S. M., McKaye K. R. 1982. Diurnal movements of populations of the prosobranch Lanistes nyassanus at Cape Maclear, Lake Malawi, Africa. Malacologia 23: 13–21. https://www.biodiversitylibrar....
 
52.
Lowe S., Browne M., Boudjelas S., De Poorter M. 2004. 100 of the World’s Worst Invasive Alien Species: A selection from the Global Invasive Species Database. The Invasive Species Specialist Group (ISSG), a specialist group of the Species Survival Commission (SSC) of the World Conservation Union (IUCN). http://www.iucngisd.org/gisd/1..., accessed 23 June 2022.
 
53.
Martín P. R., Burela S., Seuffert M. E., Tamburi N. E., Saveanu L. 2019. Invasive Pomacea snails: actual and potential environmental impacts and their underlying mehanisms. CAB Reviews 14: 042. https://doi.org/10.1079/PAVSNN....
 
54.
McClary A. 1964. Surface inspiration and ciliary feeding in Pomacea paludosa (Prosobranchia: Mesogastropoda: Ampullariidae). Malacalogia 2: 87–104. https://www.biodiversitylibrar....
 
55.
McKenzie J. D., Syed N. I., Tripp J., Winlow W. 1987. Are pedal cilia in Lymnaea under neural control? In: Boer H. H., Geraerts W. P. M., Joosse J. (eds). Neurobiology. Molluscan models. North Holland Publishing, Amsterdam, The Netherlands, pp. 26–30.
 
56.
Morrison W. E., Hay M. E. 2011. Feeding and growth of native, invasive and non-invasive alien apple snails (Ampullariidae) in the United States: invasives eat more and grow more. Biological Invasions 13: 945–955. https://doi.org/10.1007/s10530....
 
57.
Nentwig W., Bacher S., Kumschick S., Pyšek P., Vilà M. 2018. More than “100 worst” alien species in Europe. Biological Invasions 20: 1611–1621. https://doi.org/10.1007/s10530....
 
58.
Newell R. 1962. Behavioural aspects of the ecology of Peringia (=Hydrobia) ulvae (Pennant) (Gasteropoda, Prosobranchia). Proceedings of the Zoological Society, London 138: 49–75. https://doi.org/10.1111/j.1469....
 
59.
Ng T., Annate S., Jeratthitikul E., Sutcharit C., Limpanont Y., Panha S. 2020. Disappearing apple snails (Caenogastropoda: Ampullariidae) of Thailand: a comprehensive update of their taxonomic status and distribution. Journal of Molluscan Studies 86: 290–305. https://doi.org/10.1093/mollus....
 
60.
Olivier H. M., Jenkins J. A., Berhow M., Carter J. 2016. A pilot study testing a natural and a synthetic molluscicide for controlling invasive apple snails (Pomacea macu­lata). Bulletin of Environmental Contamination and Toxicology 96: 289–294. https://doi.org/10.1007/s00128....
 
61.
Parker G. H. 1911. The mechanism of locomotion in gastropods. Journal of Morphology 22: 155–170. https://doi.org/10.1002/jmor.1....
 
62.
Peters W. S. 2022. Four videos showing surface-crawling locomotion and pedal surface collection in Lymnaea stagnalis (Lymnaeidae, Gastropoda). Zenodo 6804938. https://doi.org/10.5281/zenodo....
 
63.
Ponder W. F., Lindberg D. R., Ponder J. M. 2020. Biology and evolution of the Mollusca, Vol. 1. CRC Press, Boca Raton, USA.
 
64.
Posch H., Garr A. L., Reynolds E. 2013. The presence of an exotic snail, Pomacea maculata, inhibits growth of juvenile Florida apple snails, Pomacea paludosa. Journal of Molluscan Studies 79: 383–385. https://doi.org/10.1093/mollus....
 
65.
Pyron M., Brown K.M. 2015. Introduction to Mollusca and the class Gastropoda. In: Thorp J. H., Rogers D. C. (eds). Ecology and general biology. Thorp and Covich’s freshwater invertebrates, volume 1 (4th Ed.). Elsevier, Amsterdam, The Netherlands, pp. 383–421.
 
66.
Rawlings T. A., Hayes K. A., Cowie R. H., Collins T. M. 2007. The identity, distribution, and impacts of non-­native apple snails in the continental United States. BMC Evolutionary Biology 7: 97. https://doi.org/10.1186/1471-2....
 
67.
Risso A. 1826. Histoire naturelle des principales productions de L’Europe méridionale et particuliérement de celles de environs de Nice et de Alpes Maritimes. F.-G. Levrault, Paris, France. https://www.biodiversitylibrar....
 
68.
Saveanu L., Martín P. R. 2013. Pedal surface collecting as an alternative feeding mechanism of the invasive apple snail Pomacea canaliculata (Caenogastropoda: Ampullariidae). Journal of Molluscan Studies 79: 11–18. https://doi.org/10.1093/mollus....
 
69.
Saveanu L., Martín P. R. 2015. Neuston: a relevant trophic resource for apple snails? Limnologica 52: 75–82. https://doi.org/10.1016/j.limn....
 
70.
Saveanu L., Martín P. R. 2020. An invader’s peculiar trophic behaviour: diel fluctuations and enviromental drivers. Biological Bulletin 239: 164–173. https://doi.org/10.1086/711489.
 
71.
Schmidt O. 1878. Die niederen Thiere (Brehms Thierleben. Große Ausgabe [2. Auflage], 4. Abtheilung, 2. Band). Verlag des Bibliographischen Instituts, Leipzig, Germany.
 
72.
Simroth H. 1878. Die Thätigkeit der willkürlichen Mus-.
 
73.
kulatur unserer Landschnecken. Zeitschrift für Wissen­schaftliche Zoologie 30 (Supplement): 166–224 (with Table VIII). https://www.biodiversitylibrar....
 
74.
Simroth H. 1879. Die Bewegung unserer Landschnecken, hauptsächlich erörtert an der Sohle des Limax cinereoniger Wolf. Zeitschrift für Wissenschaftliche Zoologie 32: 284–322 (with Tables XVI and XVII). https://www.biodiversitylibrar....
 
75.
Simroth H. 1882. Über die Bewegung und das Bewe­gungsorgan des Cyclostoma elegans und der einhei­mischen Schnecken überhaupt. Zeitschrift für Wissen­schaftliche Zoologie 36: 1–67 (with Table I). https://www.biodiversitylibrar....
 
76.
Sochaczewer D. 1881. Das Riechorgan der Landpul­monaten. Zeitschrift für Wissenschaftliche Zoologie 35: 30–46 (with Table III). https://www.biodiversitylibrar....
 
77.
Syed N. I., Winlow W. 1989. Morphology and electrophysiology of neurons innervating the ciliated locomotor epithelium in Lymnaea stagnalis (L.). Comparative Biochemistry and Physiology A 93: 633–644. https://doi.org/10.1016/0300-9....
 
78.
Taschenberg E., Schmidt O. 1929. Niedere Tiere (Brehms Tierleben. Jubiläums-Ausgabe, 8. Band). Phi­lipp Reclam jun., Leipzig, Germany.
 
79.
von Linden M. 1891. Das Schwimmen der Schnecken am Wasserspiegel. Biologisches Centralblatt 11: 763–766. https://www.biodiversitylibrar....
 
80.
Walter H. E. 1906. The behavior of the pond snail Lymnaeus elodes Say. Cold Spring Harbor Monographs 6: 1–35.
 
81.
Willem V. 1888. Note sur le procédé employé par les Gastéropodes d’eau douce pour glisser à la surface du liquide. Bulletins de l’Académie Royale des Sciences, des Lettres et des Beaux-Arts de Belgique 58: 421–430. https://www.biodiversitylibrar....
 
82.
Wong P. K., Kwong K. L., Qiu J.-W. 2009. Complex interactions among fish, snails and macrophytes: implications for biological control of an invasive snail. Biological Invasions 11: 2223–2232. https://doi.org/10.1007/s10530....
 
eISSN:2300-7125
ISSN:1506-7629
Journals System - logo
Scroll to top